
Control and Simulation
in Visual Studio/C#

Hans-Petter Halvorsen, M.Sc.

Contents

• PID Control

• Dynamic Systems

• Discrete Systems
– Discretization and Simulation of Continuous Systems

– Discrete PI Controller

– Discrete Lowpass Filter

• ...

Software

• DAQmx Driver

• Visual Studio/C#

Note! It is an advantage if you have acknowledge of basic
Programming, Math, Control Theory, such as Differential Equations,
PID control, basic C# programming, etc.

Industrial Control Systems (ICS)

Distributed Control Systems (DCS)

DeltaV

PLC (Programmable Logic Controller)

Siemens PLC

PC based Control System/SCADA
System (Supervisory Control And Data
Acquisition)

cRIO

Industrial Control Systems are computer controlled systems that monitor and control industrial
processes that exist in the physical world

Controller I/O Modules

Industrial PID
Controller

I/O Module

Programmable
Automation
Controller
(PAC)

LabVIEW

Theory

DAQ – Data Acquisition

A DAQ System consists of 4 parts:
1. Physical input/output signals
2. DAQ device/hardware
3. Driver software
4. Your software application (Application software)

NI DAQmx Driver
or similiar

Your App created with C#

NI USB 6008 DAQ Device

Sensors, etc.

Theory

PC-based Control System Theory

PID Control

Hans-Petter Halvorsen, M.Sc.

Implementing a Control System
While the real process is continuous, normally the
Controller and the Filter is implemented in a computer.

Theory

Control System

PID Process

Sensor

r e u y

-

Kp Ti Td

v

r – Reference Value, SP (Set-point), SV (Set Value)
y – Measurement Value (MV), Process Value (PV)
e – Error between the reference value and the measurement value (e = r – y)
v – Disturbance, makes it more complicated to control the process
Kp, Ti, Td – PID parameters

The PID Algorithm

Tuning Parameters:

𝐾𝑝
𝑇𝑖
𝑇𝑑

Where 𝑢 is the controller output and 𝑒 is the
control error:

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)

𝑟 is the Reference Signal or Set-point

𝑦 is the Process value, i.e., the Measured value

𝑢 𝑡 = 𝐾𝑝𝑒 +
𝐾𝑝

𝑇𝑖
න
0

𝑡

𝑒𝑑𝜏 + 𝐾𝑝𝑇𝑑 ሶ𝑒

Proportional Gain

Integral Time [sec.]

Derivative Time [sec.]

Dynamic Systems

Hans-Petter Halvorsen, M.Sc.

Dynamic Systems Examples
Water Tank:

Mathematical Models (differential equations):

Air Heater:

Alt 1 (Integrator):

Alt 2 (Time constant/1.order):

Alt 3 (Nonlinear):h – Level in the tank

T – Temperature in the tube

Dynamic system represented as a differential equation (1.order system):

Dynamic Systems (1.order)

Note!

ሶ𝑥 = −𝑎𝑥 + 𝑏𝑢
𝑑𝑥

𝑑𝑡

Where:

𝑥 - Process variable, e.g., Level, Pressure, Temperature, etc.

𝑢 - Input variable, e.g., Control Signal from the Controller

𝑎, 𝑏 - Constants

Discrete Systems

Hans-Petter Halvorsen, M.Sc.

Continuous vs. Discrete Systems

Continuous Signal

𝑡

𝑥

Discrete Signal

𝑘

𝑥

A computer can only deal with discrete signals

𝑥(𝑘)
𝑥(𝑘 + 1)

𝑥(𝑘 − 1)

𝑇𝑠

𝑘

𝑘
+
1

𝑘
−
1 𝑘𝑇𝑠

𝑇𝑠 - Sampling Interval

𝑥(𝑘) - Current Value

𝑥(𝑘 − 1) - Next Value

𝑥(𝑘 − 1) - Previous Value

Different Discrete Symbols and meanings

Present Value:

Previous Value:

Next (Future) Value:

Note! Different Notation is used in different literature!

𝑘

𝑥(𝑘)

𝑇𝑠 = 0.1𝑠

𝑘𝑇𝑠𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

𝑡 = 0 𝑡 = 0.1𝑠 𝑡 = 0.2𝑠

Discrete Values
Continuous Signal

𝑡 = 𝑘𝑇𝑠𝑡 = 0.3𝑠 𝑡 = 0.4𝑠 𝑡 = 0.5𝑠

Continuous vs. Discrete Systems - Example
In this Example we have used Sampling Interval 𝑇𝑠 = 0.1𝑠

𝑘 = 0

𝑇𝑠 = 0.1𝑠 𝑇𝑠 = 0.1𝑠 𝑇𝑠 = 0.1𝑠 𝑇𝑠 = 0.1𝑠

𝑥 𝑡 → 𝑥(𝑘)

𝑥 𝑡 → 𝑥(𝑘𝑇𝑠)

We have:

Example:

𝑥 𝑡 = 5 → 𝑥
5𝑠

0.1𝑠
= 𝑥(𝑘 = 50)

𝑇𝑠 = 0.1𝑠

𝑥 𝑡5 → 𝑥
5𝑠

0.1𝑠
= 𝑥(𝑘50)

or:

𝑥 𝑡 = 0.5𝑠 → 𝑥
0.5𝑠

0.1𝑠
= 𝑥(𝑘 = 5)

𝑥 𝑡0.5 → 𝑥
0.5𝑠

0.1𝑠
= 𝑥(𝑘5)

or:

𝑡 = 0.5𝑠 𝑡 = 5𝑠

Continuous vs. Discrete Systems - Example

Euler Approximation

We can use the Euler Approximation (Euler Forward discretization
method) in order to make a discrete version of a continuous
system:

ሶ𝑥 ≈
𝑥 𝑘 + 1 − 𝑥(𝑘)

𝑇𝑠

ሶ𝑥 = 𝑓(𝑥, 𝑡)

ሶ𝑥 = 𝑎𝑥 + 𝑏𝑢

A general continuous differential equation:

1.order continuous differential equation:

or: ሶ𝑥 ≈
𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠

𝑇𝑠 - Sampling Time

Continuous vs. Discrete Systems

ሶ𝑥 = −𝑎𝑥 + 𝑏𝑢

ሶ𝑥 = 𝑓(𝑥, 𝑢) 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘)

𝑥𝑘+1 = 1 − 𝑇𝑠𝑎 𝑥𝑘 + 𝑇𝑠𝑏𝑢𝑘

Example (linear, 1.order system):

Continuous model: Discrete model:

Continuous model: Discrete model:

Sampling and Aliasing
Original Signal Aliasing -> The Sampling Rate is to low in this case!

Sampling Interval Sampling Frequency

Discretization
In order to simulate this system in C#, we need to
find the discrete differential equation.

Given the following differential equation:

We can use e.g., the Euler Approximation:

Then we get:

This gives the following discrete differential equation:

ሶ𝑥 = −𝑎𝑥 + 𝑏𝑢

𝑥𝑘+1 = 1 − 𝑇𝑠𝑎 𝑥𝑘 + 𝑇𝑠𝑏𝑢𝑘

ሶ𝑥 ≈
𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠 𝑇𝑠 - Sampling Interval

𝑥𝑘+1 − 𝑥𝑘
𝑇𝑠

= −𝑎𝑥𝑘 + 𝑏𝑢𝑘

Simulation
Example

% Simulation of discrete model

clear, clc

% Model Parameters

a = 0.25;b = 2;

% Simulation Parameters

Ts = 0.1; %s

Tstop = 20; %s

uk = 1; % Step Response

x(1) = 0;

% Simulation

for k=1:(Tstop/Ts)

x(k+1) = (1-a*Ts).*x(k) + Ts*b*uk;

end

% Plot the Simulation Results

k=0:Ts:Tstop;

plot(k,x)

grid on

ሶ𝑥 = −𝑎𝑥 + 𝑏𝑢

Lage C# Example av dette!
Plotte x(t)

𝑥 𝑡 → 𝑥(𝑘)

𝑥 𝑡 → 𝑥(𝑘𝑇𝑠)

We have: Example: 𝑇𝑠 = 0.1𝑠

Discretization of Time Delay - Example

𝑥 𝑡 − 𝜏 → 𝑥(𝑘 − 𝜏𝑘)With Time Delay (𝜏):

Assume Time Delay 𝜏 = 2𝑠:

𝜏 = 2𝑠 → 𝜏𝑘 =
𝜏

𝑇𝑠
=

2𝑠

0.1𝑠
= 20 discrete intervals

In general we have: 𝑥 𝑡 − 𝜏 → 𝑥(𝑘 −
𝜏

𝑇𝑠
) 𝑥𝑡−𝜏 → 𝑥

𝑘−
𝜏
𝑇𝑠

𝑥 𝑡 − 𝜏 → 𝑥
𝑘−

𝜏
𝑇𝑠

= 𝑥𝑘−20This gives:

or:

Discretization with Time Delay
Given the following differential equation:

We can use e.g., the Euler Approximation:

Then we get:

This gives the following discrete differential equation:

ሶ𝑥 = −𝑎𝑥 + 𝑏𝑢(𝑡 − 𝜏)

𝑥𝑘+1 = 1 − 𝑇𝑠𝑎 𝑥𝑘 + 𝑇𝑠𝑏𝑢𝑘−
𝜏

𝑇𝑠

ሶ𝑥 ≈
𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠 𝑇𝑠 - Sampling Interval

𝑥𝑘+1 − 𝑥𝑘
𝑇𝑠

= −𝑎𝑥𝑘 + 𝑏𝑢
𝑘−

𝜏
𝑇𝑠

If we set 𝑇𝑠 = 0.1𝑠 and 𝜏 = 2𝑠

𝑥𝑘+1 = 1 − 0.1𝑎 𝑥𝑘 + 0.1𝑏𝑢𝑘−20

Simulation Example

Hans-Petter Halvorsen, M.Sc.

Controlling a Mathematical Model of a given Level Tank

Level Tank Example

We will show an example where we create a Control and Simulation Application in C#.
We will create a Control System that controls the level in water tank. We will use a
mathematical model of the water tank (Simulation).

Real System: Control Strategy:

HMI

Mathematical Model of Level Tank
𝐴 ሶℎ = 𝐾𝑝𝑢𝑚𝑝 ∙ 𝑢 − 𝐹𝑜𝑢𝑡

𝐾𝑝𝑢𝑚𝑝

𝑢

𝐴

ℎ [cm] is the level in the water tank
𝑢 [V] is the pump control signal to the pump
𝐴𝑡 [cm2] is the cross-sectional area in the tank
𝐾𝑝𝑢𝑚𝑝 [(cm3/s)/V] is the pump gain

𝐹𝑜𝑢𝑡 [cm3/s] is the outflow through a manual
valve in the bottom of the tank. 𝐹𝑜𝑢𝑡 is constant.

Mathematical Model:

Where:

20 𝑐𝑚

0 𝑐𝑚

ሶℎ =
1

𝐴
𝐾𝑝𝑢𝑚𝑝 ∙ 𝑢 − 𝐹𝑜𝑢𝑡

or:

Discretization of Model

We will use the Euler Forward discretization method:

This gives:

ሶℎ =
1

𝐴
𝐾𝑝𝑢𝑚𝑝 ∙ 𝑢 − 𝐹𝑜𝑢𝑡We apply Euler on the continuous model:

ℎ𝑘+1 − ℎ𝑘
𝑇𝑠

=
1

𝐴
𝐾𝑝𝑢𝑚𝑝 ∙ 𝑢𝑘 − 𝐹𝑜𝑢𝑡

ሶ𝑥 ≈
𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠

Finally we get the following discrete model of the level tank:

ℎ𝑘+1 = ℎ𝑘 +
𝑇𝑠
𝐴

𝐾𝑝𝑢𝑚𝑝 ∙ 𝑢𝑘 − 𝐹𝑜𝑢𝑡

Discrete PI(D) Controller

Hans-Petter Halvorsen, M.Sc.

HMI
Bytte ut bilde med bare innebygde Visual Studio komponenter

Kun Simulering! – Ikke implementert virkelig prosess ennå!

Discrete PID Control

• We need to make a discrete version of the PID
controller in order to be able to implement it in
C#

• In out case we may only need a PI controller, so
for simplicity we just create a discrete PI
controller.

Continuous PID Controller:

𝑢 𝑡 = 𝐾𝑝𝑒 +
𝐾𝑝

𝑇𝑖
න
0

𝑡

𝑒𝑑𝜏 + 𝐾𝑝𝑇𝑑 ሶ𝑒

Discrete PI Controller Example
Continuous PI Controller:

We use the Euler Backward method:

We may set:

This gives the following discrete PI algorithm:

This algorithm can be easly implemented in a Programming language

Students:
Create a PI(D)
Controller in C#

Simple Discrete PI Controller – C#
class PidController

{

public double r;

public double Kp;

public double Ti;

public double Ts;

private double z;

public double PiController(double y)

{

double e;

double u;

e = r - y;

u = Kp * e + (Kp / Ti) * z;

z = z + Ts * e;

return u;

}

}

Note! This is just an Example

Real Control System

Hans-Petter Halvorsen, M.Sc.

Controlling the Real Level Tank System

Level Tank System

Level Tank Control System

In this example we will use a small-scale laboratory process called LM-900 Level System

NI USB-6008 I/O Module

Specifications:
• 8 analog inputs, AI (12-bit, 10 kS/s, -10-10V)
• 2 analog outputs, AO (12-bit, 150 S/s, 0-5V)
• 12 digital I/O (DI/DO)
• 32-bit counter

Note! DAQmx Driver is needed!!

4 different types of Signals:
AO – Analog Output
AI – Analog Input
DO – Digital Output
DI – Digital Input

USB Connection -10-10V

0-5V

Add References to the DAQmx
Driver in Visual Studio

using NationalInstruments;

using NationalInstruments.DAQmx;

We also need to add the following Namespaces:
NationalInstruments.Common.dll

NationalInstruments.DAQmx.dll

Support for .NET Framework with DAQmx Driver

44
Make sure to add .NET Framework support for your version of Visual Studio

Note! Also included with Measurement Studio

Simple DAQ in C# with DAQmx
private void btnGetAnalogIn_Click(object sender, EventArgs e)

{

Task analogInTask = new Task();

AIChannel myAIChannel;

myAIChannel = analogInTask.AIChannels.CreateVoltageChannel(

"dev1/ai0",

"myAIChannel",

AITerminalConfiguration.Differential,

0,

5,

AIVoltageUnits.Volts

);

AnalogSingleChannelReader reader = new

AnalogSingleChannelReader(analogInTask.Stream);

double analogDataIn = reader.ReadSingleSample();

txtAnalogIn.Text = analogDataIn.ToString();

}

Analog In Example

Simple DAQ in C# with DAQmx
private void btnWriteAnalogOut_Click(object sender, EventArgs e)

{

Task analogOutTask = new Task();

AOChannel myAOChannel;

myAOChannel = analogOutTask.AOChannels.CreateVoltageChannel(

"dev1/ao0",

"myAOChannel",

0,

5,

AOVoltageUnits.Volts

);

AnalogSingleChannelWriter writer = new

AnalogSingleChannelWriter(analogOutTask.Stream);

double analogDataOut;

analogDataOut = Convert.ToDouble(txtAnalogOut.Text);

writer.WriteSingleSample(true, analogDataOut);

}

Analog Out Example

Scaling
Converting from Voltage to Engineering Units

𝑦 = 𝑎𝑥 + 𝑏

𝑦 − 𝑦1 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

𝑥 − 𝑥1
𝑥2

𝑥1, 𝑦1

𝑥2, 𝑦2

𝑥1

𝑦1

𝑦2

We assume a Linear relationship:

We find 𝑎 and 𝑏 using this Formula:

Theory

Scaling – Level Tank Example
Converting from Voltage to Engineering Units

𝑦 − 𝑦1 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

𝑥 − 𝑥1

0𝑉 5𝑉
0cm

20𝑐𝑚

𝑥1, 𝑦1 = (0, 0)

𝑥2, 𝑦2 = (5, 20) 0𝑉 → 0𝑐𝑚

5𝑉 → 20𝑐𝑚

For this Level Tank we have:

𝑦 𝑐𝑚 = 4𝑥 𝑉

This gives:

We use:

Discrete Lowpass Filter

Hans-Petter Halvorsen, M.Sc.

Lowpass Filter
What is a Lowpass Filter?
Why do we need a Lowpass filter?

Show a plot with Noise

Lowpass Filter

𝑇𝑠 ≤
𝑇𝑓
5

𝐻 𝑠 =
𝑦(𝑠)

𝑢(𝑠)
=

1

𝑇𝑓𝑠 + 1

𝑇𝑓 - Filter Time constant

Lowpass Filter Transfer function:

Typically:

Discrete Lowpass Filter

• We need to make a discrete version of the
Lowpass Filter in order to be able to implement
it in C#

Discrete Lowpass Filter Example

We use the Euler Backward method:

Inverse Laplace the differential Equation:

This gives:

Lowpass Filter Transfer function:
We define:

This gives:

This algorithm can be easly implemented
in a Programming language

Filter output Noisy input signal

Students: Create a Lowpass Filter in C#

Discrete Lowpass Filter – C#
class Filter

{

public double yk;

public double Ts;

public double Tf;

public double LowPassFilter(double yFromDaq)

{

double a;

double yFiltered;

a = Ts / (Ts + Tf);

yFiltered = (1 - a) * yk + a * yFromDaq;

yk = yFiltered;

return yFiltered;

}

}
Note! This is just an Example

Hardware in the Loop
Simulation and Testing

Hans-Petter Halvorsen, M.Sc.

HIL Simulation
• Hardware-in-the-loop (HIL) simulation is a technique that is used in the

development and test of complex process systems

• The HIL simulation includes a mathematical model of the process and a
hardware device/ECU you want to test, e.g. an industrial PID controller we will
use in our example. The hardware device is normally an embedded system

• The main purpose with the HIL Simulation is to test the hardware device on a
simulator before we implement it on the real process

• It is also very useful for training purposes, i.e., the process operator may learn
how the system works and operate by using the hardware-in-the-loop
simulation

• Another benefit of Hardware-In-the-Loop is that testing can be done without
damaging equipment or endangering lives.

Theory

HIL Example
• Typically, a simulator communicates with an “ECU” (“Electronic Control

Unit”) via ordinary I/O. Such a system - where the real controller is
controlling a simulated process is denoted Hardware-in-the-loop (HIL)
simulation.

• The main purpose of this Example is to test the hardware device on a
simulator before we implement it on the real process.

• If the mathematical model used in the simulator is an accurate
representation of the real process, you may even tune the controller
parameters (e.g. the PID parameters) using the simulator.

• We will test the Fuji PGX5 PID controller on a model, and if everything
is OK we will implement the controller on the real system.

HIL Simulation & Testing Setup

I/O Module
(USB-6008)

Model of Process (Air Heater)

PID Control

Computer (with Visual Studio/C#)

USB
Analog Out
(Process Value)

Analog In
(Control Signal)

Mathematical Model

Note!!

0-5V

1-5V

AO0

GND

AI0+

AI0-

With this setup you can Test the Fuji PID using
HIL Simulation and Testing

ሶ𝑇𝑜𝑢𝑡 =
1

𝜃𝑡
−𝑇𝑜𝑢𝑡 + 𝐾ℎ𝑢 𝑡 − 𝜃𝑑 + 𝑇𝑒𝑛𝑣

Fuju PXG5 + Real Air Heater + PC for Monitoring
Industrial PID Controller

1-5V

Process Value

Trending/Monitoring
the Process Value and
Control Signal on the PC

USB

PC + C# App

0-5V

Control Signal

y

With this setup you can Monitor the
Process Value and Control Signal on your PC

1-5V
Process Value

Control Signal
0-5V

u

HIL with Fuji PXG5/PXR5 PID

• It may be very useful to test a controller function
with a simulated process before the controller is
applied to the real (physical) process.

• If the mathematical model used in the simulator
is an accurate representation of the real process,
you may even tune the controller parameters
(e.g. the PID parameters) using the simulator.

Theory

HIL Simulation Lab - Step-by-step

Step 1: Ordinary Software Simulation:

Step 2: HIL Simulation:

Step 3: Running the Real System:

1

2

3

Measurement Studio

Hans-Petter Halvorsen, M.Sc.

Measurement Studio

• C# is a powerful programming language, but has few built-in
features for measurement and control applications.

• Measurement Studio is used for development of
measurement, control and monitoring applications using .NET
and Visual Studio.

• Measurement Studio is an add-on to Visual Studio which makes
it easier to create such applications. With Measurement Studio
we can implement Data Acquisition and a graphical HMI.

• Download Software here:
http://www.ni.com/academic/download

66

Software

http://www.ni.com/academic/download

Visual Studio + Measurement Studio

GUI Controls that are included with Measurement Studio

Trending Data

…
{

…

waveformGraph.PlotYAppend(value);

}

You may use the “WaveformGraph” Control included with
Measurement Studio..

You only need one line of code, e.g. inside a Timer Event:

Name of your WaveformGraph
control

Name of the Method
to use

Name of the variable
with Temperature data

Datalogging

Hans-Petter Halvorsen, M.Sc.

Datalogging

Typically you will want to log your Data.

Typical Examples:

• File

• OPC

• Database
Datalogging using OPC and SQL Server are
explained in other Videos I have made.

With Measurement Studio you can easily
Log Data to Files or an OPC Server

Hans-Petter Halvorsen, M.Sc.

University College of Southeast Norway

www.usn.no

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/

http://www.usn.no/
mailto:hans.p.halvorsen@hit.no
http://home.hit.no/~hansha/

